An open design methodology for automotive electrical/electronic system based on quantum platform

نویسندگان

  • Hongbo Lan
  • Chengrui Zhang
  • Hongbin Li
چکیده

The current automotive electrical/electronic (E/E) systems are characterized by proprietary solutions, which seldom allow the exchange of applications between both automotive OEMs and their suppliers. It is especially difficult to change ECU suppliers or reuse the software in a new generation of products. Increasing functional requirements in automotive E/E vehicle development will significantly enhance the integration of novel functions. In order to satisfy the increasing requirements for the complex software development of automotive E/E system, implement the portability of application software modules and compatibility of ECU modules among different automotive OEMs and their suppliers, this paper presents an open design methodology based on quantum platform. An open architecture of automotive E/E system based quantum platform is established. Its principle and structures are described in detail. Finally, an automated mechanical transmission (AMT) system as a typical case is used to demonstrate the design process based on the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cooperative Control of Mobile Robots in Creating a Runway Platform for Quadrotor Landing

Multi-agent systems are systems in which several agents accomplish a mission in a cooperative manner. In this paper, a novel idea for the construction of a movable runway platform based on multi-agent systems is presented. It is assumed that an aerial agent (quadrotor) decides to make an emergency landing due to reasons such as a decrease in energy level or technical failure, while there is no ...

متن کامل

Novel Phase-frequency Detector based on Quantum-dot Cellular Automata Nanotechnology

The electronic industry has grown vastly in recent years, and researchers are trying to minimize circuits delay, occupied area and power consumption as much as possible. In this regard, many technologies have been introduced. Quantum Cellular Automata (QCA) is one of the schemes to design nano-scale digital electronic circuits. This technology has high speed and low power consumption, and occup...

متن کامل

Quo Vadis , SLD ? Reasoning About the Trends and Challenges of System Level

| System-level design (SLD) is considered by many as the next frontier in electronic design automation (EDA). SLD means many things to different people since there is no wide agreement on a definition of the term. Academia, designers, and EDA experts have taken different avenues to attack the problem, for the most part springing from the basis of traditional EDA and trying to raise the level of...

متن کامل

Design Optimization for 4.1-THZ Quantum Cascade Lasers

We present an optimized design for GaAs/AlGaAs quantum cascade lasers operating at ‎‎4.1THz. This was based on a three-well active module with diagonal radiative transition. This ‎was performed by modifying the existing model structure, to reduce the parasitic anticrossings ‎‎(leakage currents) as well as the optical gain linewidth. While the gain FWHM was reduced by ‎more than 50% the gain pea...

متن کامل

A fast wallace-based parallel multiplier in quantum-dot cellular automata

Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advances in Engineering Software

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2008